From Sound to Action: Deep Learning for Audio-Based Localization and Navigation in Robotics

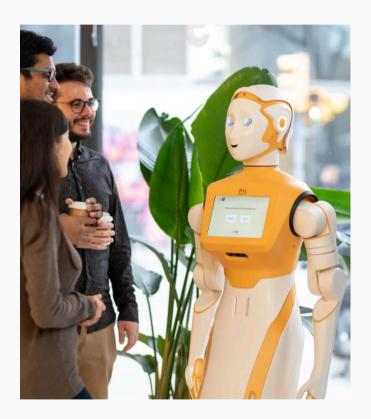
Gaétan Lepage

July 15, 2025

Social Robotics

- Social robotics aims to build capable robotic agents.
- They must collaborate with humans (social acceptance, etc.)
- **Human Robot Interactions** entail a wide range of challenges

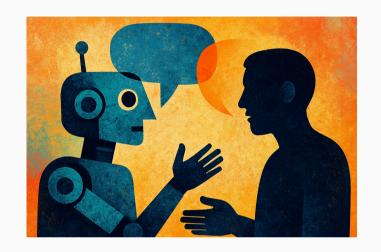
Social Robotics



- Social robotics aims to build capable robotic agents.
- They must **collaborate with humans** (social acceptance, etc.)
- **Human Robot Interactions** entail a wide range of challenges
- Key challenges:
 - ► **Perception:** Extract relevant information from *multi-modal data* captured by diverse sensors
 - Action: Learn relevant policies to achieve desirable behaviors (navigation, grasping, conversation, etc.)

Challenges of Auditory Perception in Robotics

- Humans mainly communicate through speech
- Robots must properly understand humans to have relevant interactions
- Sound can also be used to localize speakers
- Core acoustic tasks in robotics:
 - Automatic Speech Recognition (ASR) [1]
 - ► Sound Source Localization (SSL) [2][3]
 - ► Conversational Speech Generation [4]



^[1] Yu et al., Automatic Speech Recognition. Springer, 2016.

^[2] Argentieri et al., "A Survey on Sound Source Localization in Robotics: From Binaural to Array Processing Methods," *Comput. Speech Lang.*, 2015.

^[3] Grumiaux et al., "A Survey of Sound Source Localization with Deep Learning Methods," JASA, 2022.

^[4] Defossez et al., "Moshi: a Speech-Text Foundation Model for Real-Time Dialogue," arXiv preprint, 2024.

Learning Robot Behaviors

^[1] Majumder et al., "Move2hear: Active Audio-Visual Source Separation," in *ICCV*, 2021.

^[2] Lathuilière et al., "Neural Network Based Reinforcement Learning for Audio-Visual Gaze Control in Human-Robot Interaction," *Pattern Recognition Letters*, 2019.

^[3] Zacharaki et al., "Safety Bounds in Human Robot Interaction: A Survey," Safety science, 2020.

^[4] Ottoni et al., "A Systematic Review of Human-Robot Interaction: the Use of Emotions and the Evaluation of Their Performance," *International Journal of Social Robotics*, 2024.

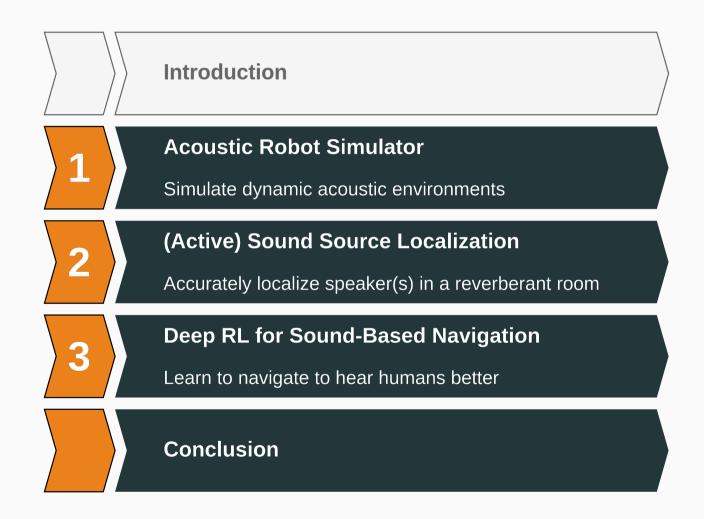
Learning Robot Behaviors

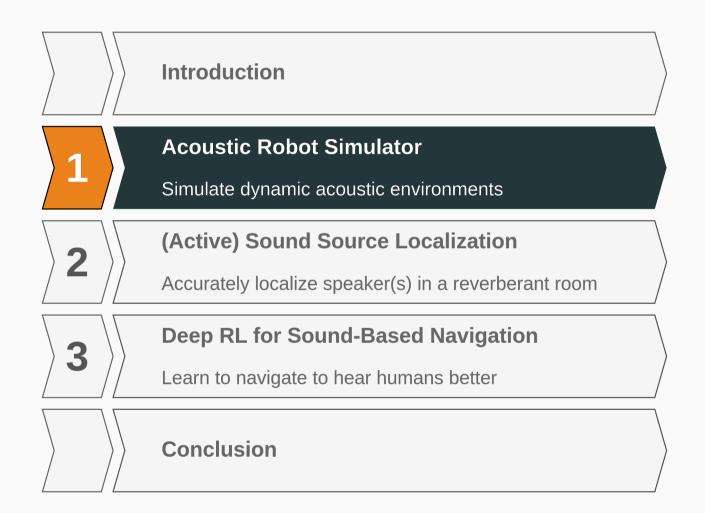
Robots need to react to their environment and take actions

- React dynamically to the environment
- Accomplish interactive or collaborative tasks [1][2]
- Several objectives and constraints can be described

Challenges:

- Designing tractable objectives for robots behavior
- Ensuring humans safety [3]
- Making robots *socially accepted* by humans? [4]
- Detecting and reacting to external events?
- Learning flexible policies





Motivations

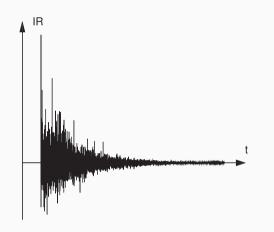
Motivations:

- Experimenting on real robotic platforms is limiting
- Collecting significant amounts of data
- Lack of holistic approaches to interactive acoustic simulation

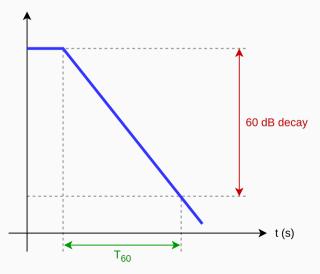
Objectives:

- Modeling realistic acoustic environments
- Simulating sound propagation in reverberant rooms
- Provide high-level primitives for experimenting with robotic auditory perception

Room Impulse Response



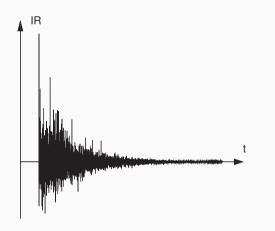
Sound pressure Level (dB)



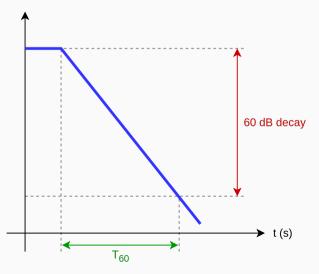
RIR properties:

- Characterizes the reverberation properties of the room
- Computed for each source-microphone pair
- T_{60} measures the reverberation level
- The resulting image/microphone signal is obtained by convolving each source signal with the corresponding RIR, and summing over the sources

Room Impulse Response



Sound pressure Level (dB)



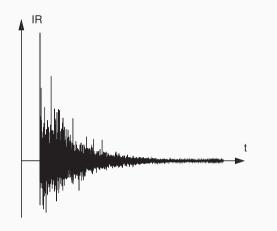
RIR properties:

- Characterizes the reverberation properties of the room
- Computed for each source-microphone pair
- T_{60} measures the reverberation level
- The resulting image/microphone signal is obtained by convolving each source signal with the corresponding RIR, and summing over the sources

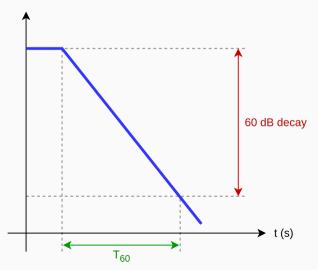
Single-source microphone signal:

$$y[n] = (h * x)[n]$$

Room Impulse Response



Sound pressure Level (dB)



RIR properties:

- Characterizes the reverberation properties of the room
- Computed for each source-microphone pair
- T_{60} measures the reverberation level
- The resulting image/microphone signal is obtained by convolving each source signal with the corresponding RIR, and summing over the sources

Single-source microphone signal:

$$y[n] = (h * x)[n]$$

Multi-source microphone signal:

$$y[n] = \sum_{i=1}^{n_s} (h_i * x_i)[n]$$

- Numerical simulation [1][2]:
 - Approximation of the solution of a physical equation (e.g. Helmholtz)
 - ► Numerical solver (FDTD, BEM, etc.)
 - Accurate, but computationally expensive

^[1] D. Botteldooren, "Acoustical Finite-Difference Time-Domain Simulation in a Quasi-Cartesian Grid," *JASA*, 1994.

^[2] Raghuvanshi et al., "Efficient and Accurate Sound Propagation Using Adaptive Rectangular Decomposition," *IEEE TVCG*, 2009.

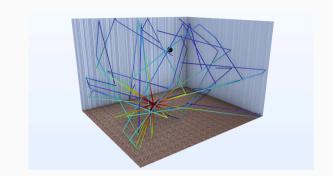
^[3] Cao et al., "Interactive Sound Propagation with Bidirectional Path Tracing," ACM TOG, 2016.

^[4] Allen et al., "Image method for efficiently simulating small-room acoustics," JASA, 1979.

• Numerical simulation [1][2]:

- ► Approximation of the solution of a physical equation (e.g. Helmholtz)
- ► Numerical solver (FDTD, BEM, etc.)
- Accurate, but computationally expensive

- Ray-tracing [3]
- ► Image Source Model [4]



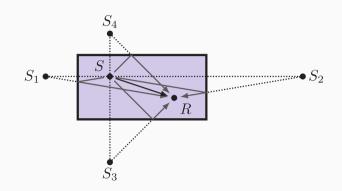
^[1]D. Botteldooren, "Acoustical Finite-Difference Time-Domain Simulation in a Quasi-Cartesian Grid," *JASA*, 1994.

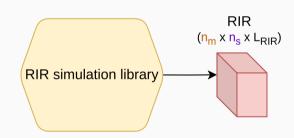
^[2] Raghuvanshi et al., "Efficient and Accurate Sound Propagation Using Adaptive Rectangular Decomposition," *IEEE TVCG*, 2009.

^[3] Cao et al., "Interactive Sound Propagation with Bidirectional Path Tracing," ACM TOG, 2016.

^[4] Allen et al., "Image method for efficiently simulating small-room acoustics," JASA, 1979.

RIR simulation: Generate RIR from a 3D room specification

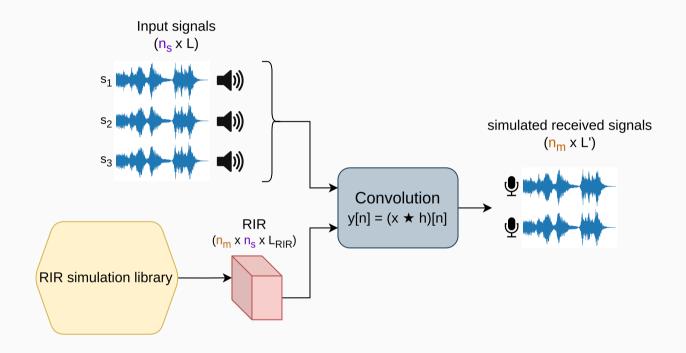




Support for two backend libraries: *Pyroomacoustics* [1] and *gpuRIR* [2].

^[1] Scheibler et al., "Pyroomacoustics: A Python Package for Audio Room Simulation and Array Processing Algorithms," in *ICASSP*, 2018.

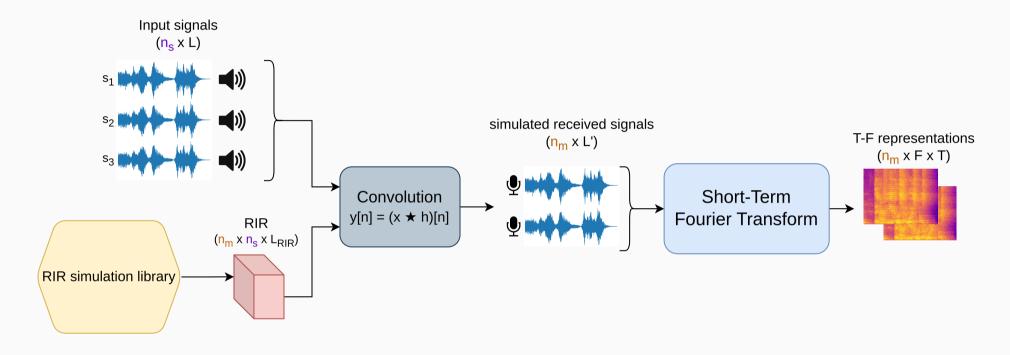
^[2] Diaz-Guerra et al., "gpuRIR: A Python Library for Room Impulse Response Simulation with GPU Acceleration," *Multimedia Tools and Applications*, 2021.



Support for two backend libraries: *Pyroomacoustics* [1] and *gpuRIR* [2].

^[1] Scheibler et al., "Pyroomacoustics: A Python Package for Audio Room Simulation and Array Processing Algorithms," in *ICASSP*, 2018.

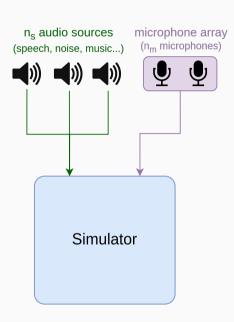
^[2] Diaz-Guerra et al., "gpuRIR: A Python Library for Room Impulse Response Simulation with GPU Acceleration," *Multimedia Tools and Applications*, 2021.

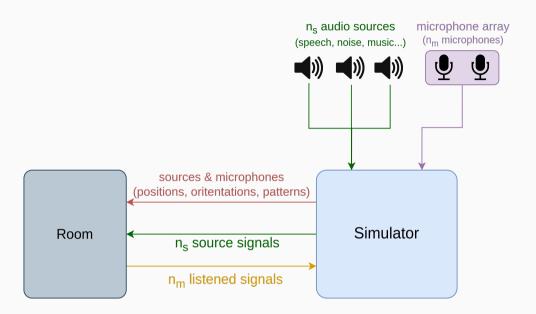


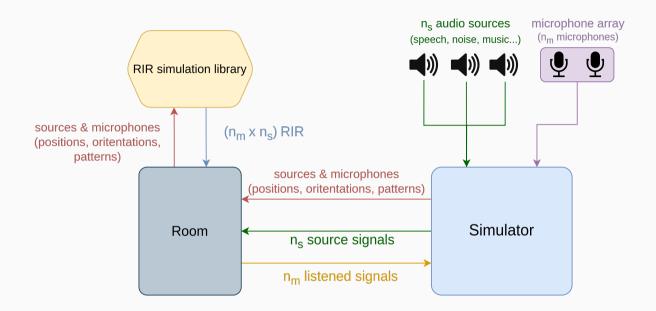
Support for two backend libraries: *Pyroomacoustics* [1] and *gpuRIR* [2].

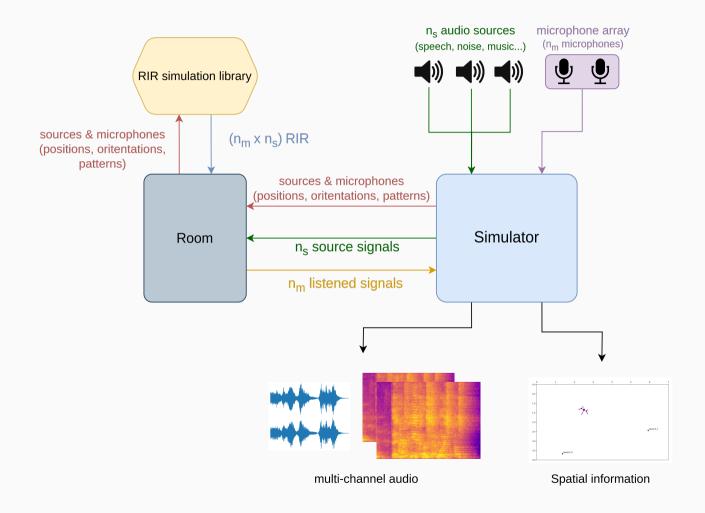
^[1] Scheibler et al., "Pyroomacoustics: A Python Package for Audio Room Simulation and Array Processing Algorithms," in *ICASSP*, 2018.

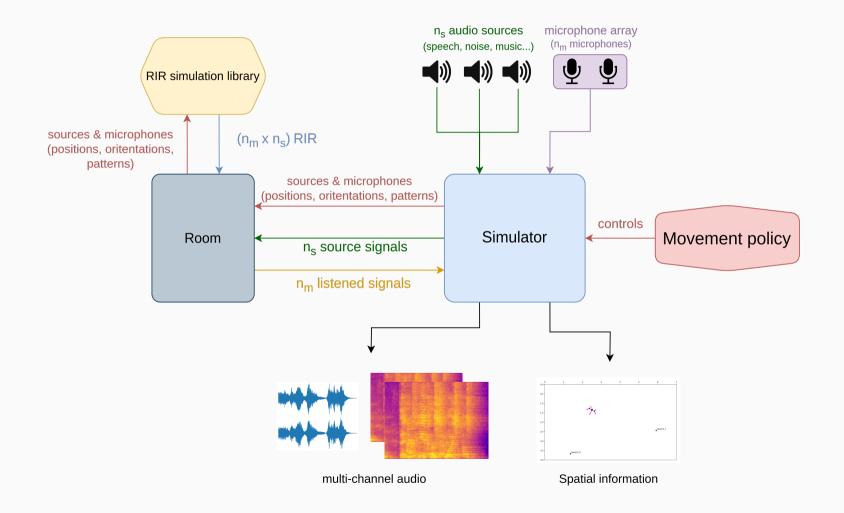
^[2] Diaz-Guerra et al., "gpuRIR: A Python Library for Room Impulse Response Simulation with GPU Acceleration," *Multimedia Tools and Applications*, 2021.











from rl_audio_nav.audio_simulator import GpuRirRoom, BinauralArray, AudioSimilator

```
from rl_audio_nav.audio_simulator import GpuRirRoom, BinauralArray, AudioSimilator

# Initialization
room = GpuRirRoom(size_x=4, size_y=7, rt_60=0.3)
```

```
from rl_audio_nav.audio_simulator import GpuRirRoom, BinauralArray, AudioSimilator

# Initialization
room = GpuRirRoom(size_x=4, size_y=7, rt_60=0.3)

mic_array = BinauralArray(
   position=np.array([3.0, 3.0, 1.0]),
   orientation=np.array([-1.0, 1.0, 0.0]),
   mic_dist=2, # cm
)
```

```
from rl_audio_nav.audio_simulator import GpuRirRoom, BinauralArray, AudioSimilator

# Initialization
room = GpuRirRoom(size_x=4, size_y=7, rt_60=0.3)

mic_array = BinauralArray(
   position=np.array([3.0, 3.0, 1.0]),
   orientation=np.array([-1.0, 1.0, 0.0]),
   mic_dist=2, # cm
)

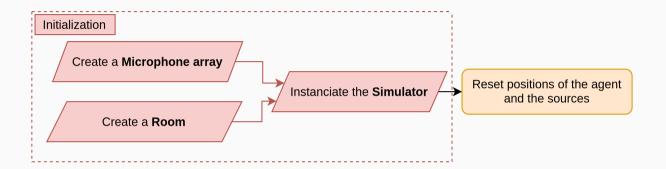
audio_simulator = AudioSimulator(room, mic_array, n_speech_sources=3)
```

```
from rl audio nav.audio simulator import GpuRirRoom, BinauralArray, AudioSimilator
# Initialization
room = GpuRirRoom(size x=4, size y=7, rt 60=0.3)
mic array = BinauralArray(
  position=np.array([3.0, 3.0, 1.0]),
  orientation=np.array([-1.0, 1.0, 0.0]),
  mic dist=2, # cm
audio simulator = AudioSimulator(room, mic array, n speech sources=3)
# Load speech signals and perform simulation
audio simulator.step()
```

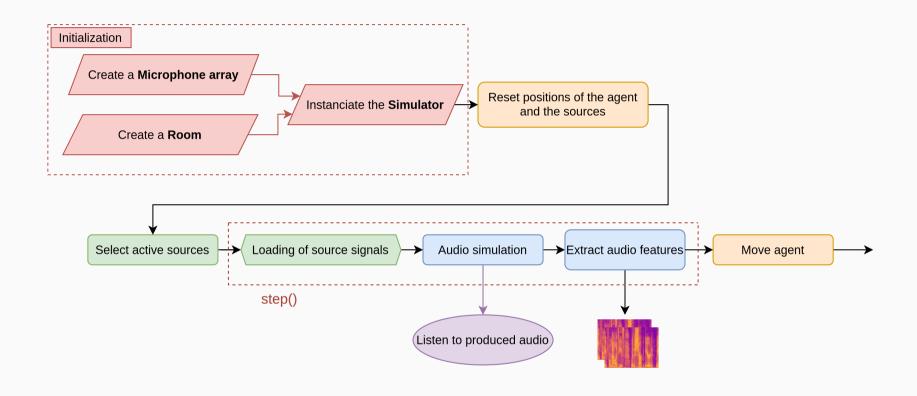
```
from rl audio nav.audio simulator import GpuRirRoom, BinauralArray, AudioSimilator
# Initialization
room = GpuRirRoom(size x=4, size y=7, rt 60=0.3)
mic array = BinauralArray(
  position=np.array([3.0, 3.0, 1.0]),
  orientation=np.array([-1.0, 1.0, 0.0]),
  mic dist=2, # cm
audio simulator = AudioSimulator(room, mic array, n speech sources=3)
# Load speech signals and perform simulation
audio simulator.step()
# (2, F, T) complex tensor
stft = audio simulator.get agent stft()
```

```
from rl audio nav.audio simulator import GpuRirRoom, BinauralArray, AudioSimilator
# Initialization
room = GpuRirRoom(size x=4, size y=7, rt 60=0.3)
mic array = BinauralArray(
  position=np.array([3.0, 3.0, 1.0]),
  orientation=np.array([-1.0, 1.0, 0.0]),
  mic dist=2, # cm
audio simulator = AudioSimulator(room, mic array, n speech sources=3)
# Load speech signals and perform simulation
audio simulator.step()
# (2, F, T) complex tensor
stft = audio simulator.get_agent_stft()
# Compute the DoA with respect to the "speech 1" source
doa source 1 = audio simulator.get doa("speech 1")
```

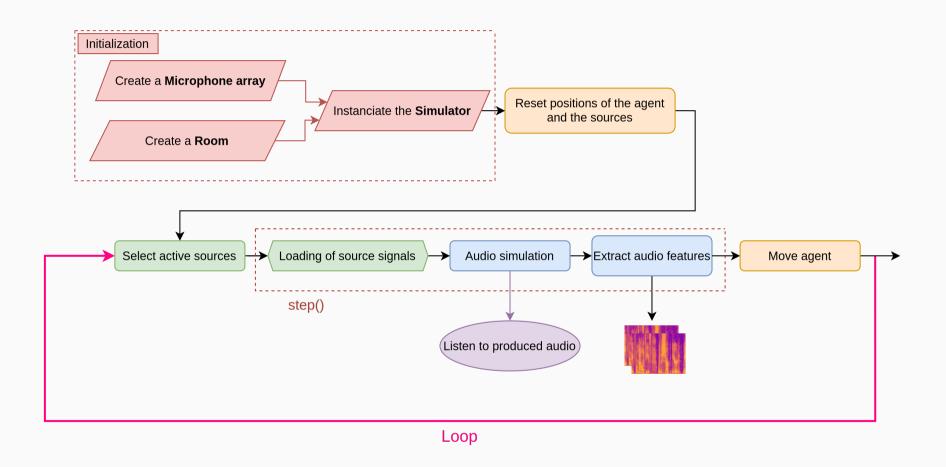
Modeling Active Scenarios



Modeling Active Scenarios



Modeling Active Scenarios

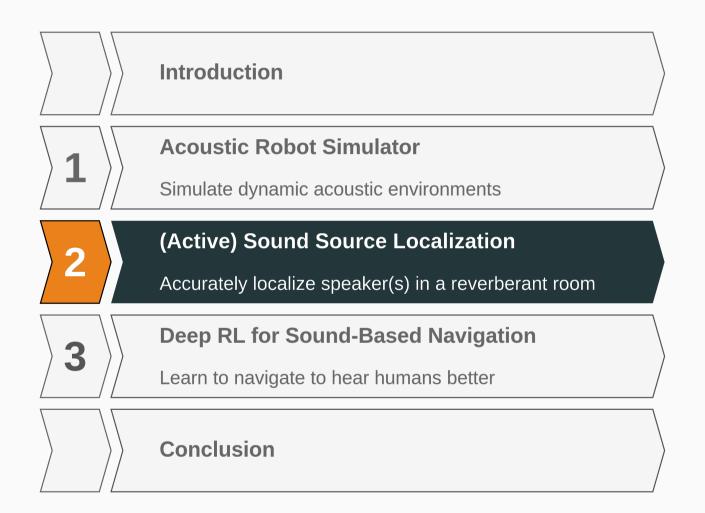


Performance

	$T_{\rm sim} \ ({\rm s}, \ (\%))$	$t_{\rm RIR}~({\rm s},~(\%))$	t_{conv} (s, (%))	t_{STFT} (s, (%))
gpuRIR	21.7 (100%)	3.69 (17%)	14.6 (67%)	2.4 (11%)
Pyroomacoustics	124 (100%)	109 (88%)	11.6 (9.4%)	2.3 (1.8%)

Summary - Acoustic Simulator

- Complete solution for modeling various acoustic robotics scenarios
- High-level, intuitive API to easily and quickly build on top of
- Extraction of various spectral representations of simulated signals
- Great **flexibility** allowing for various use-cases:
 - Dataset generation
 - Modeling interactive scenarios where both microphones and sources can move
 - Use as an environment to train Deep RL agents



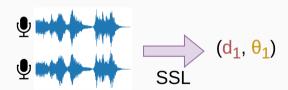
^[1] Gustafsson et al., "Source Localization in Reverberant Environments: Modeling and Statistical Analysis," *IEEE TSAP*, 2004.

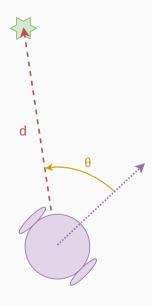
^[2] Schmidt, "Multiple Emitter Location and Signal Parameter Estimation," *IEEE Trans. Antennas Propag.*, 1986.

^[3] Grumiaux et al., "A Survey of Sound Source Localization with Deep Learning Methods," JASA, 2022.

^[4] Argentieri et al., "A Survey on Sound Source Localization in Robotics: From Binaural to Array Processing Methods," *Comput. Speech Lang.*, 2015.

- SSL (Sound Source Localization): estimate the position of one or multiple sound sources
 - Dense scientific literature: from classical sound processing methods [1][2] to deep learning techniques [3]
 - ▶ Often applied to robotics [4]
 - Multiple variations of the task





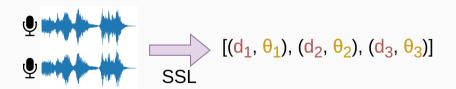
^[1] Gustafsson et al., "Source Localization in Reverberant Environments: Modeling and Statistical Analysis," *IEEE TSAP*, 2004.

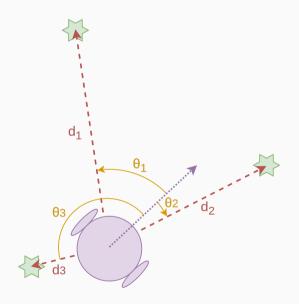
^[2] Schmidt, "Multiple Emitter Location and Signal Parameter Estimation," *IEEE Trans. Antennas Propag.*, 1986.

^[3] Grumiaux et al., "A Survey of Sound Source Localization with Deep Learning Methods," JASA, 2022.

^[4] Argentieri et al., "A Survey on Sound Source Localization in Robotics: From Binaural to Array Processing Methods," *Comput. Speech Lang.*, 2015.

- SSL (Sound Source Localization): estimate the position of one or multiple sound sources
 - ▶ Dense scientific literature: from classical sound processing methods [1][2] to deep learning techniques [3]
 - ▶ Often applied to robotics [4]
 - Multiple variations of the task





Motivation:

- Real-world robotics scenarios are often dynamic
- Static SSL frameworks struggle predicting the source-array distance

^[1] Nakadai et al., "Active Audition for Humanoid," in AAAI/IAAI, 2000.

^[2] Nguyen et al., "Long-Term Robot Motion Planning for Active Sound Source Localization with Monte Carlo Tree Search," in *IEEE/HSCMA*, 2017.

^[3] Bustamante et al., "Towards Information-Based Feedback Control for Binaural Active Localization," in *ICASSP*, 2016.

^[1] Evers et al., "The LOCATA Challenge: Acoustic Source Localization and Tracking," IEEE/TASLP, 2020.

Motivation:

- Real-world robotics scenarios are often dynamic
- Static SSL frameworks struggle predicting the source-array distance

Intuition:

- Aggregate instantaneous angular estimates over time
- Leverage the robot movement to refine the predictions of the sources' 2D position

^[1] Nakadai et al., "Active Audition for Humanoid," in AAAI/IAAI, 2000.

^[2] Nguyen et al., "Long-Term Robot Motion Planning for Active Sound Source Localization with Monte Carlo Tree Search," in *IEEE/HSCMA*, 2017.

^[3] Bustamante et al., "Towards Information-Based Feedback Control for Binaural Active Localization," in *ICASSP*, 2016.

^[4] Evers et al., "The LOCATA Challenge: Acoustic Source Localization and Tracking," *IEEE/TASLP*, 2020.

Motivation:

- Real-world robotics scenarios are often dynamic
- Static SSL frameworks struggle predicting the source-array distance

Intuition:

- Aggregate instantaneous angular estimates over time
- Leverage the robot movement to refine the predictions of the sources' 2D position

Literature:

• Several works in the Robotics literature [1][2][3]

^[1] Nakadai et al., "Active Audition for Humanoid," in AAAI/IAAI, 2000.

^[2] Nguyen et al., "Long-Term Robot Motion Planning for Active Sound Source Localization with Monte Carlo Tree Search," in *IEEE/HSCMA*, 2017.

^[3] Bustamante et al., "Towards Information-Based Feedback Control for Binaural Active Localization," in *ICASSP*, 2016.

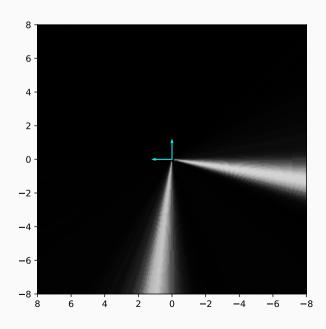
• Lack of deep-learning-based methods

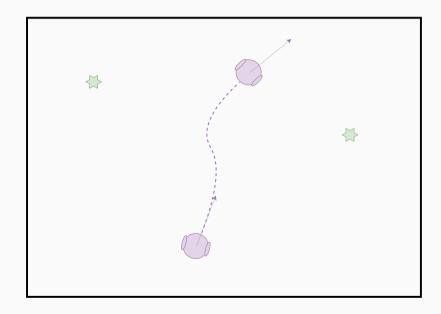
Multiple works involving moving sources (e.g. LOCATA challenge [4]), but only few considering
mobile microphones

^[4] Evers et al., "The LOCATA Challenge: Acoustic Source Localization and Tracking," IEEE/TASLP, 2020.

Proposed Approach

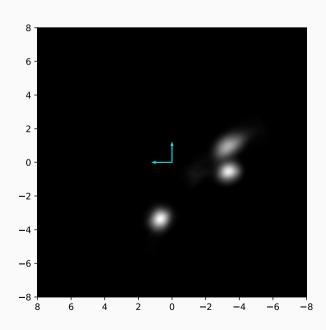
- Discrete step process
- Project static SSL predictions to a 2D egocentric view
- Aggregate these maps into a single final heatmap

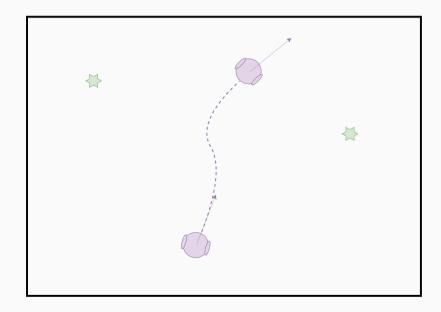




Proposed Approach

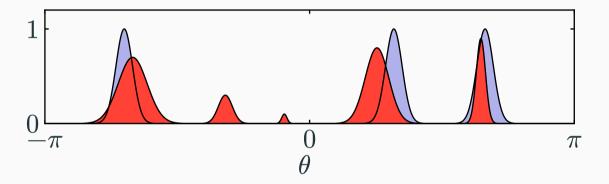
- Discrete step process
- Project static SSL predictions to a 2D egocentric view
- Aggregate these maps into a single final heatmap





Static SSL Model (1/2): DoA Spectrum Regression

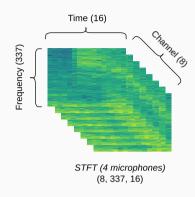
- Encode DoA values over $[-\pi, \pi]$ (discretized) [1]
- Can represent an arbitrary number of sources
- Ground-truth DoA values are represented with Gaussians

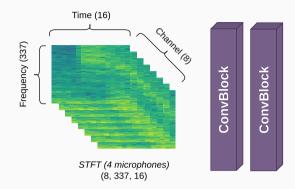


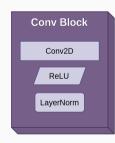
• Thanks to this representation, the SSL task becomes a DoA spectrum regression:

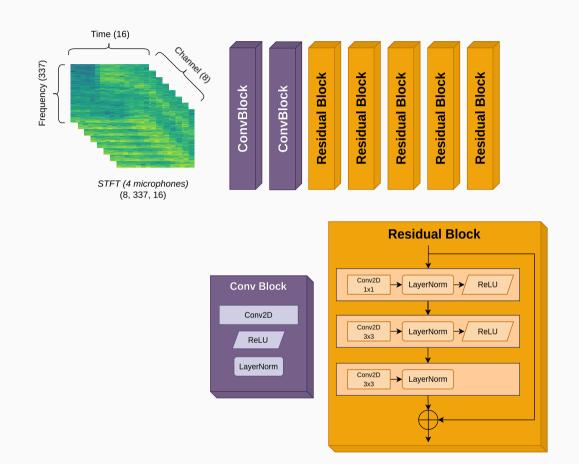
$$\mathcal{L} = \|\hat{o} - o\|_2^2$$

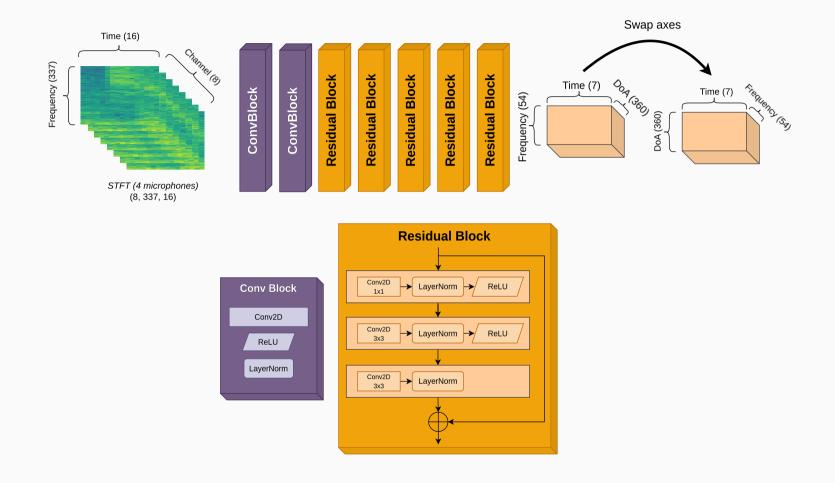
^[1] He et al., "Neural Network Adaptation and Data Augmentation for Multi-Speaker Direction-of-Arrival Estimation," *IEEE/TASLP*, 2021.

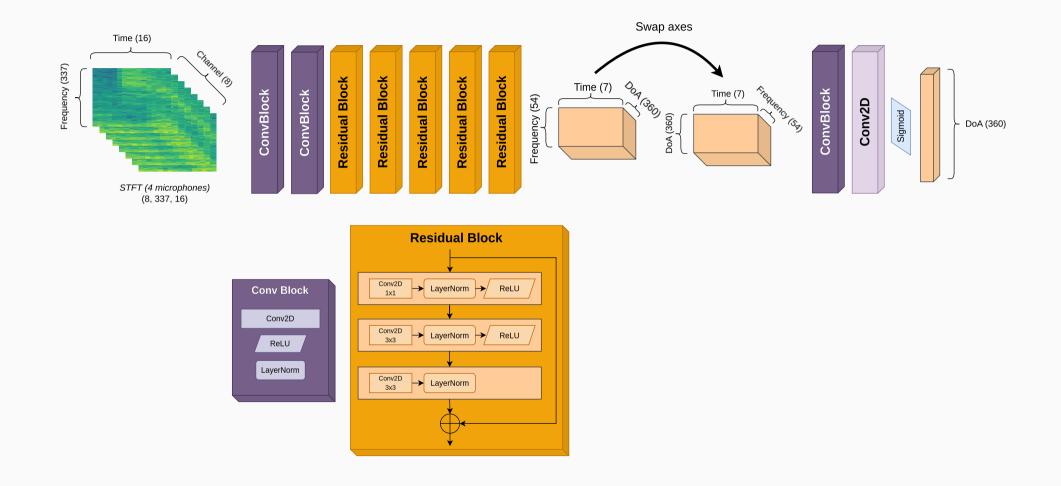


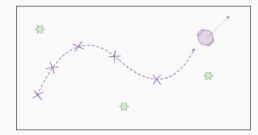


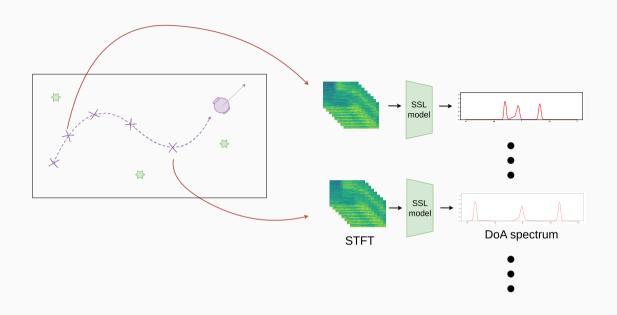


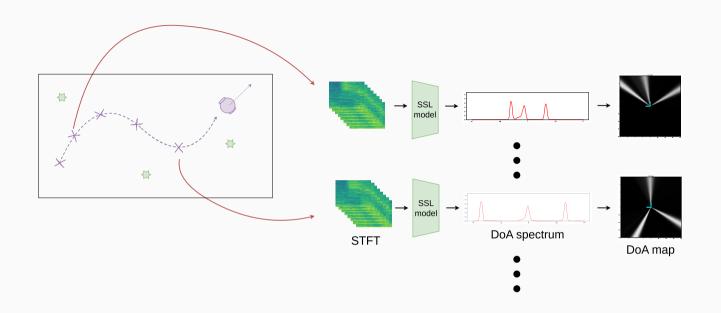


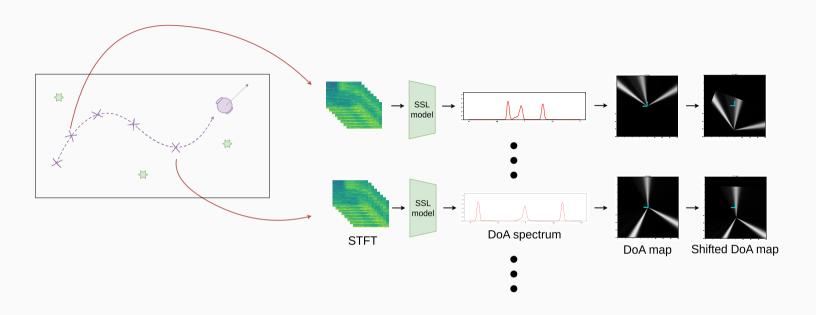


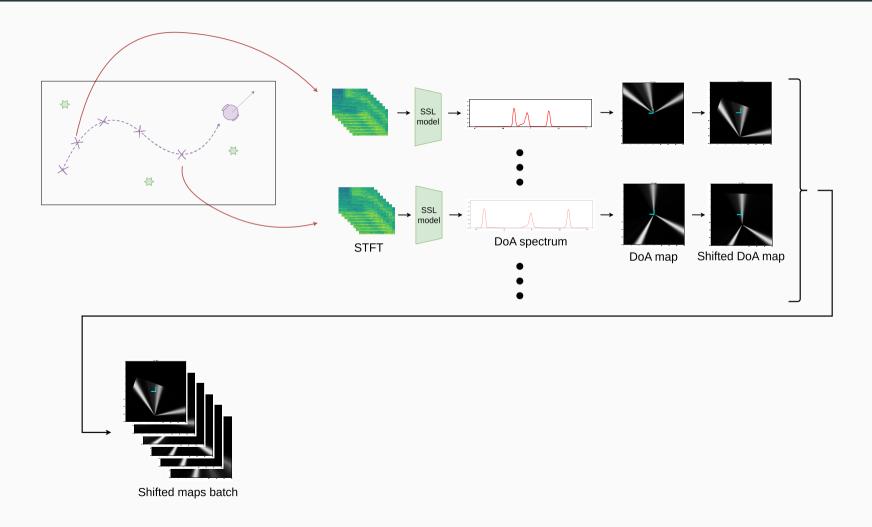


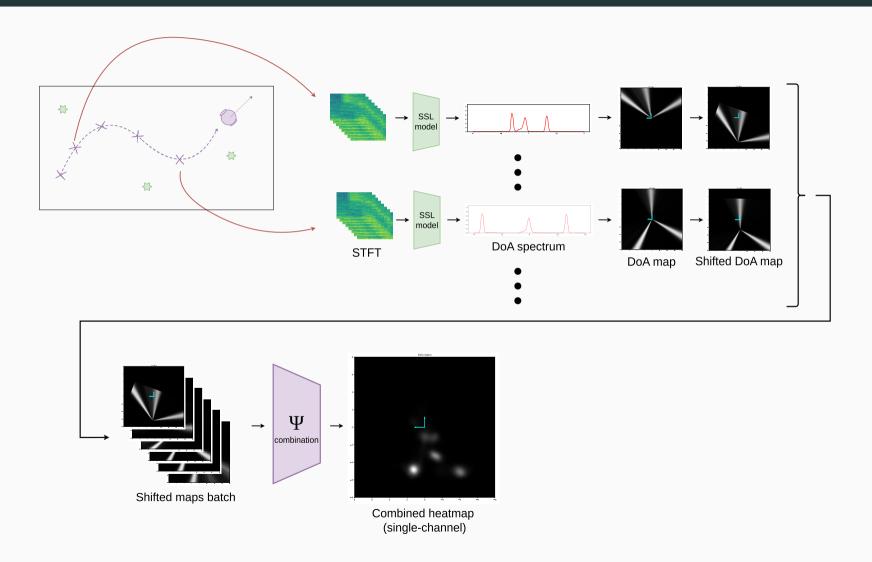


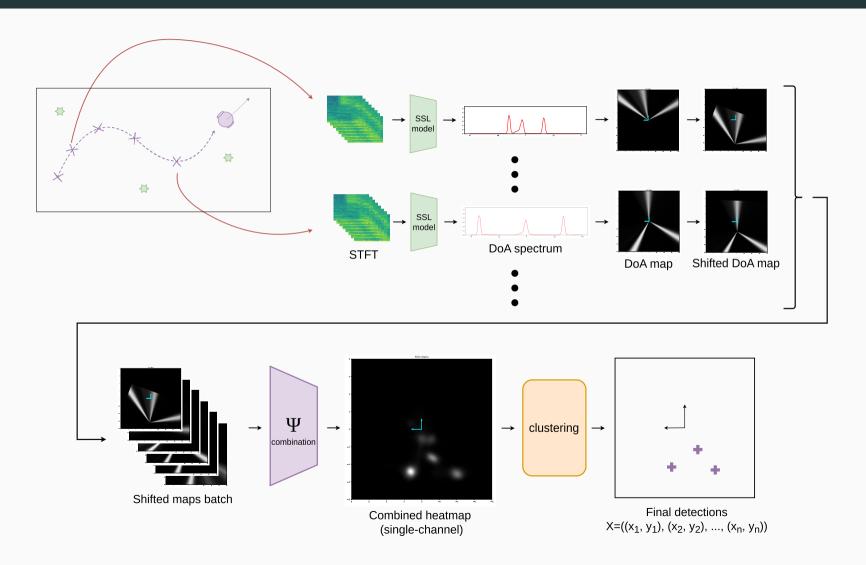


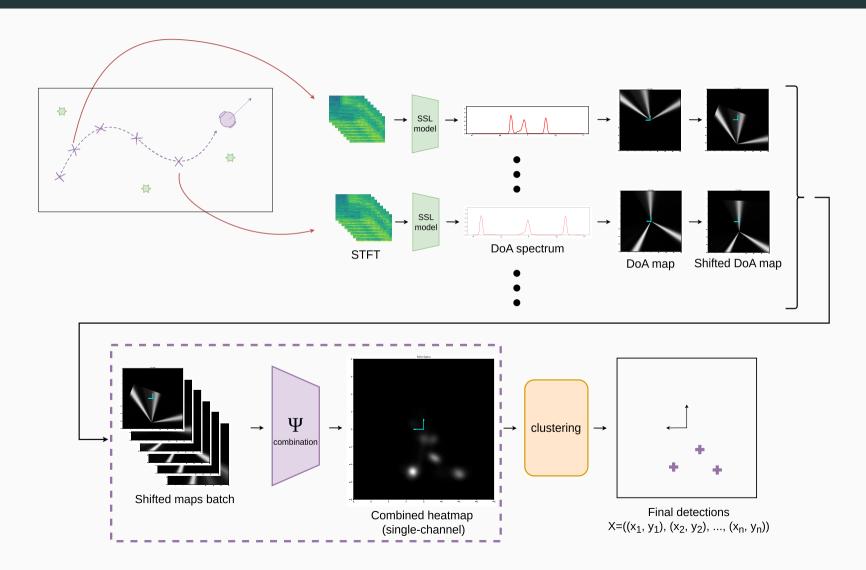


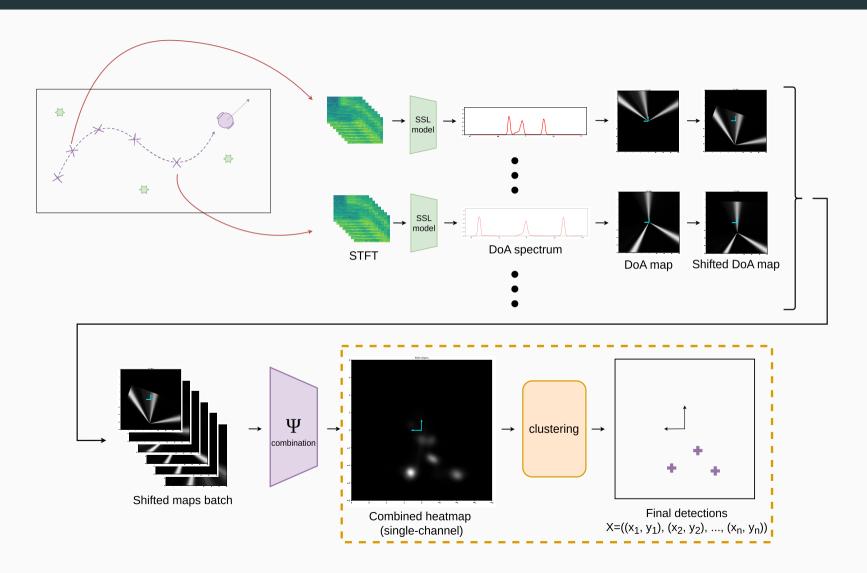












Aggregation strategy

Aggregate shifted maps into a single heatmap

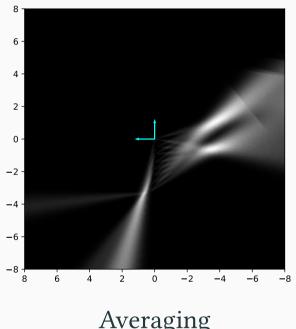
Aggregation strategy

Aggregate shifted maps into a single heatmap

Two methods were explored:

• Naive averaging:

$$\widehat{M}_t = \frac{1}{H} \sum_{t'=0}^{H-1} M_{t-t'}$$



Averaging

Aggregation strategy

Aggregate shifted maps into a single heatmap

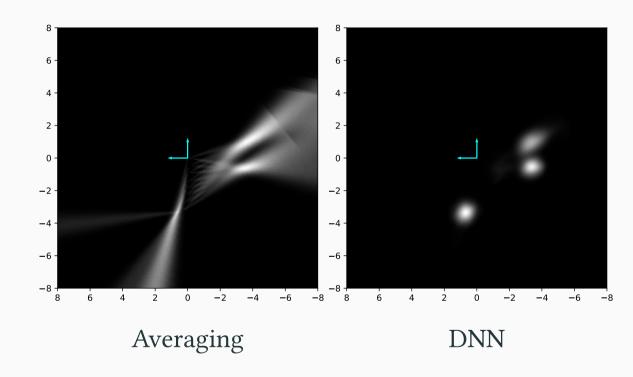
Two methods were explored:

• Naive averaging:

$$\widehat{M}_t = \frac{1}{H} \sum_{t'=0}^{H-1} M_{t-t'}$$

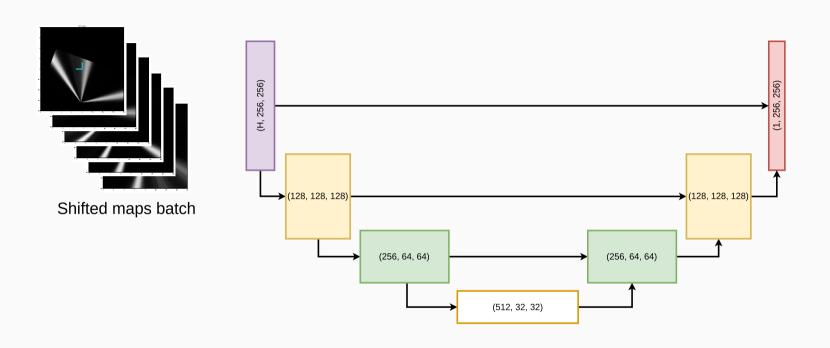
• U-Net model [1]:

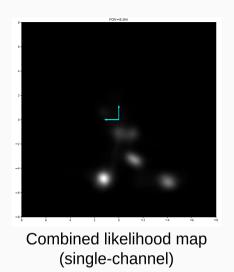
$$\widehat{\boldsymbol{M}}_t = \Psi_{\!\! \mathrm{DNN}} \big(M_{t-H+1}, ..., M_t \big)$$



^[1] Ronneberger et al., "U-net: Convolutional Networks for Biomedical Image Segmentation," in *MICCAI*, 2015.

Neural Network-Based Aggregation



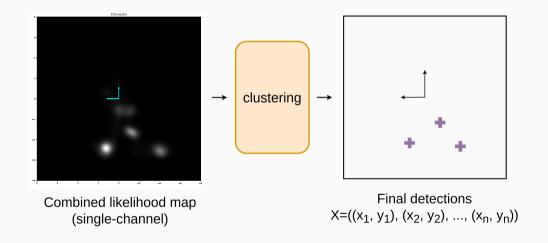


$$\mathcal{L} = \frac{1}{p^2} \|\mathcal{M}_t - \mathcal{M}_t^*\|_F^2$$

Clustering

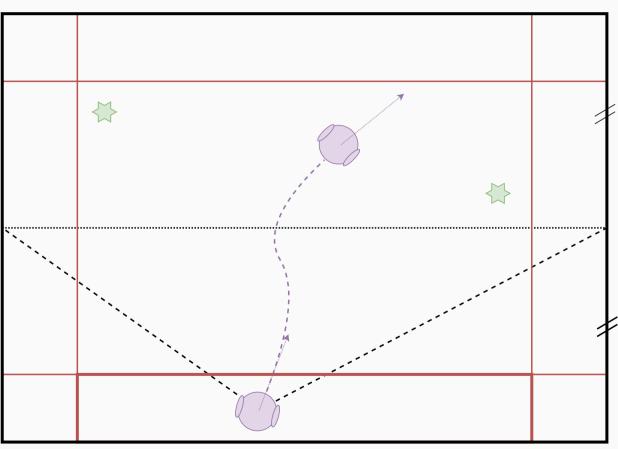
Extract discrete 2D position predictions from the heatmap

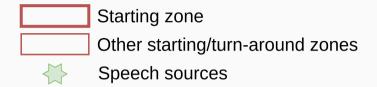
- 1. Low values are filtered out from the egocentric heatmap (threshold τ)
- 2. The DBSCAN algorithm [1] is used to cluster pixels into several groups
- 3. The position of the highest-value pixel of each cluster is used as the final detection



^[1] Schubert et al., "DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN," *ACM TODS*, 2017.

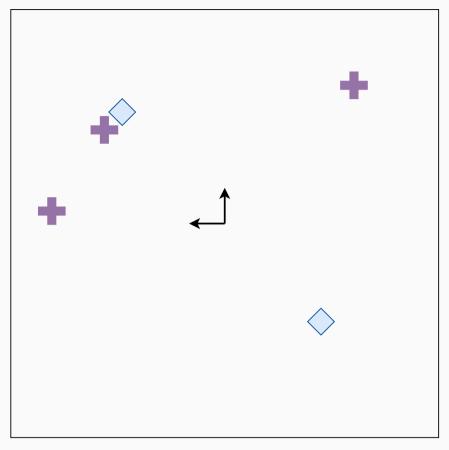
Experimental Setup





- Dataset collection:
 - ► 1-4 sources placed randomly
 - ▶ The robot starts close to a wall
 - The orientation is drawn randomly at each step: $\theta_{t+1} \sim \mathcal{N}\left(\theta_t, \sigma_{\theta}^2\right)$
 - ► The agent moves forward in the new direction by 50cm
 - ightharpoonup The trajectory runs for H steps

Standard Evaluation Metrics

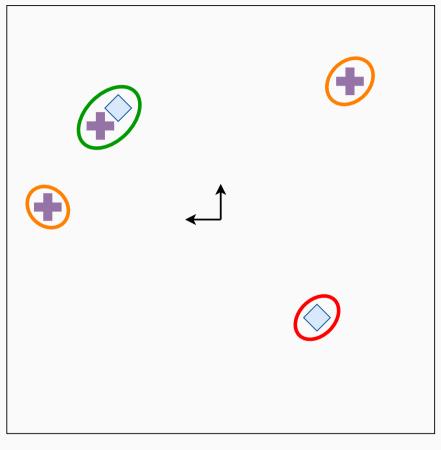


- Define a threshold δ for defining correct detections
- Match predictions and ground truths

Ground-truth source positions

Network predictions

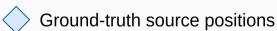
Standard Evaluation Metrics



- Define a threshold δ for defining correct detections
- Match predictions and ground truths

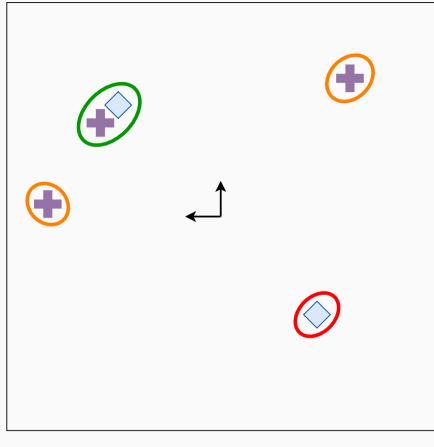
$$Precision = \frac{\#correct}{\#predictions}$$

$$Recall = \frac{\#correct}{\#sources}$$



Network predictions

Standard Evaluation Metrics



- Define a threshold δ for defining correct detections
- Match predictions and ground truths

$$Precision = \frac{\#correct}{\#predictions}$$

$$Recall = \frac{\#correct}{\#sources}$$

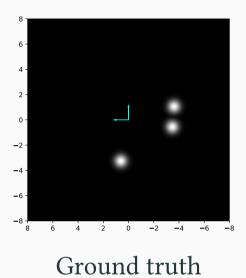
In this example:

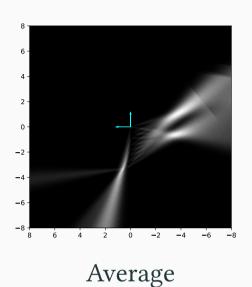
- Precision = $\frac{1}{3} \approx 33\%$
- Recall = $\frac{1}{2} = 50\%$

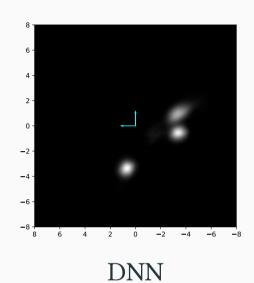
Ground-truth source positions

Network predictions

Comparison of Aggregation Methods





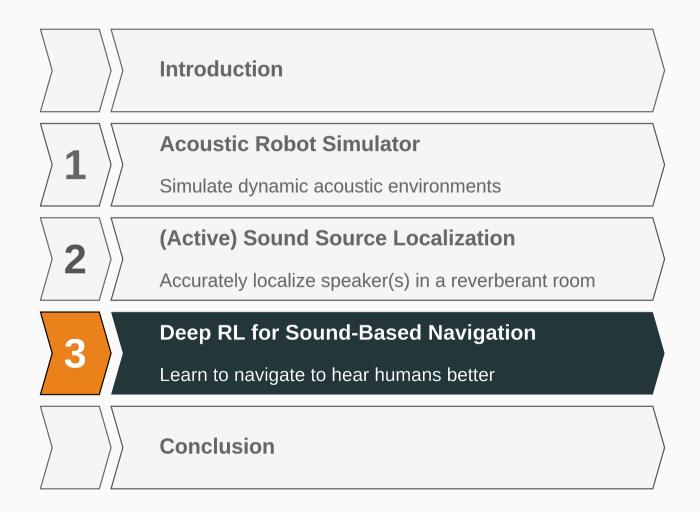


Comparison of Aggregation Methods



Summary - Active SSL

- Complete pipeline for active multi-source localization
- **Aggregation of information accross time** to build fine 2D position estimates
- Leveraging of a static SSL deep-learning model
- Deep U-Net style architecture for combining heatmaps
- Training of the **static SSL model** and the **U-Net blender** using synthetic datasets generated from our simulator



Motivation & problem statement

Goal: Perceptually motivated navigation [1]

- Robots are expected to *understand* human speech
- Automatic Speech Recognition (ASR) is the first step of the speech understanding pipeline
- How can navigation help with improving the robot's ASR performance?

^[1] Majumder et al., "Move2hear: Active Audio-Visual Source Separation," in *ICCV*, 2021.

The Word Error Rate (WER) measures the ASR performance.

→ *WER:* Minimum edit distance between two sentences:

The Word Error Rate (WER) measures the ASR performance.

→ *WER:* Minimum edit distance between two sentences:

$$WER = \frac{\#substitutions + \#deletions + \#insertions}{\#words}$$

The Word Error Rate (WER) measures the ASR performance.

→ *WER:* Minimum edit distance between two sentences:

$$WER = \frac{\text{\#substitutions} + \text{\#deletions} + \text{\#insertions}}{\text{\#words}}$$

Example:

• Reference: Obviously, he was __ able to catch the last bus on time today.

• Prediction: Obviously, he was not able to catch the past bus on time _____.

The Word Error Rate (WER) measures the ASR performance.

→ *WER:* Minimum edit distance between two sentences:

$$WER = \frac{\text{\#substitutions} + \text{\#deletions} + \text{\#insertions}}{\text{\#words}}$$

Example:

• Reference: Obviously, he was __ able to catch the last bus on time today.

• Prediction: Obviously, he was not able to catch the past bus on time _____.

$$WER = \frac{1+1+1}{12} = 0.25$$

Reverberation impact on WER



- WER increases as reverberation grows
- Robot positioning impacts ASR performance
- Correct positioning matters more as T_{60} increases

Problem Statement

Idea: Frame the navigation problem as a sequential decision problem

- At each step, the robot records a short audio snippet;
- Based on this observation, it decides what its next move should be;
- The environment rewards the robot based on a WER estimate for its current position;
- → Reinforcement learning is very well suited to this problem.

Reinforcement Learning

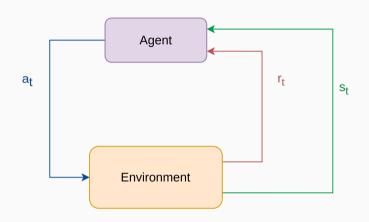
RL [1] solves sequential decision problems, formalized as Markov Decision Processes (MDPs) [2].

At each step:

- The agent senses the environment by observing the state s_t in the state space \mathcal{S}
- It chooses an action a_t in the action set \mathcal{A}
- It receives a reward r_t

The goal is to maximize the cumulated discounted reward:

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} \right]$$



^[1] Sutton et al., Reinforcement Learning: An Introduction. MIT press Cambridge, 1998.

^[2] R. Bellman, "A Markovian Decision Process," Journal of mathematics and mechanics, 1957.

Proposed Environment Formulation

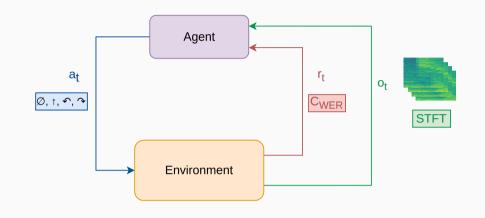
Our environment is only partially observable.

- **State space:** possible agent positions in the room: $\mathcal{S} \subset \mathbb{R}^2 \times [0, 2\pi]$
- Observation space: Spectral representation of recorded audio:

$$\Omega \subset \mathbb{C}^{C \times F \times T}$$

- Action space: $A = \{STAY, FORWARD, TURN_LEFT, TURN_RIGHT\}$
- **Reward:** decreasing function of the WER:

$$\begin{aligned} \pmb{r_t} &= \begin{cases} -\mu_W & \text{if the agent tries to hit a wall} \\ \mu_C \exp(-\xi_C \pmb{C_t}) - \mu_m \mathbb{1}(a_t = \text{FORWARD}) & \text{otherwise} \end{cases} \end{aligned}$$



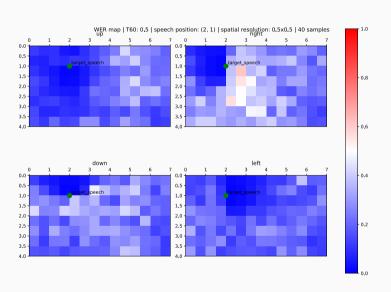
WER Cost Maps

- The cost of a state requires an estimate of the average WER for this position;
- The WER cost maps can be either **directional** or **omnidirectional**;

Problem: WER can't be computed at the environment run-time.

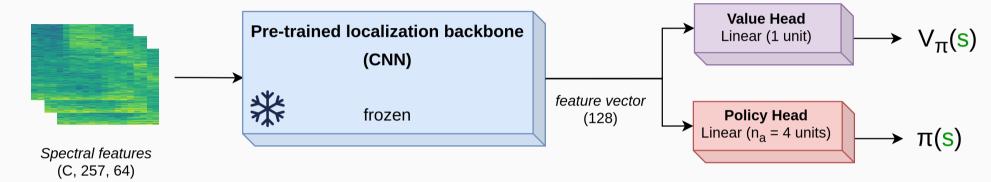
→ Pre-compute statistical estimates of the theoretical WER cost of a state.

$$C_{\mathrm{WER}}(\boldsymbol{x}_{a}, \alpha_{a}) = \mathbb{E}_{(v, t) \in \mathcal{D}} \left[\frac{1}{100} \; \mathrm{WER} \left(\underbrace{\mathrm{ASR}_{\psi} \big[\mathrm{listened}(v, \boldsymbol{x}_{a}, \alpha_{a}, \boldsymbol{x}_{s}) \big]}_{\mathrm{predicted \; transcript} \; \hat{t}}, t \right) \right]$$



Agent Architecture

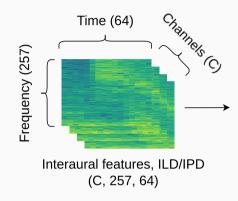
observation s

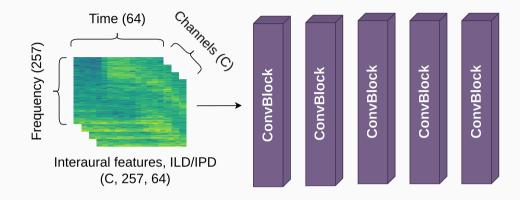


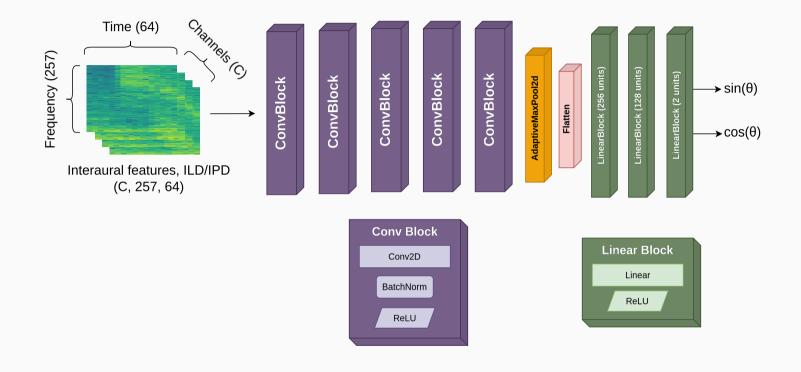
Two-stage training:

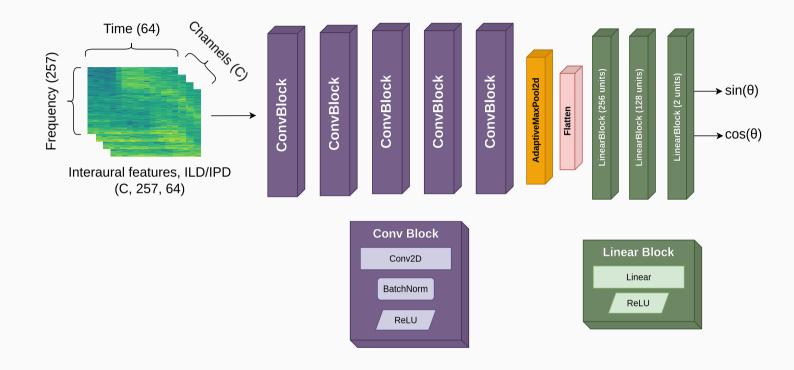
- 1. Train the backbone on a supervised single-source localization task
- 2. Train the value and policy heads with PPO [1]

^[1] Schulman et al., "Proximal Policy Optimization Algorithms," arXiv preprint, 2017.



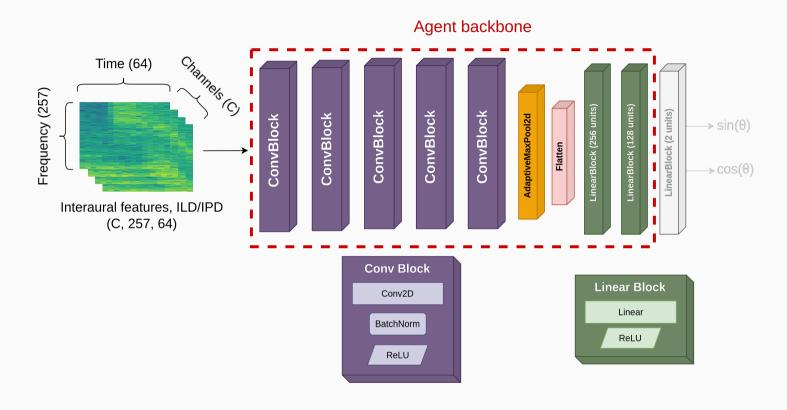






Training loss:

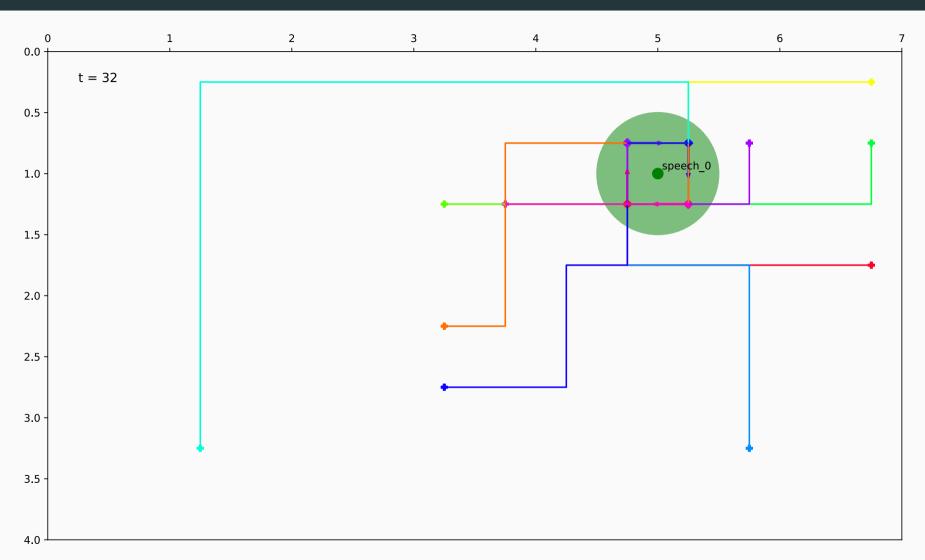
$$\mathcal{L}_{\mathrm{DoA}\left(\hat{\pmb{\theta}},\theta\right)} = 1 - \left(\sin(\theta)\sin\left(\hat{\pmb{\theta}}\right) + \cos(\theta)\cos\left(\hat{\pmb{\theta}}\right)\right)$$



Training loss:

$$\mathcal{L}_{\mathrm{DoA}\left(\hat{\boldsymbol{\theta}},\boldsymbol{\theta}\right)} = 1 - \left(\sin(\boldsymbol{\theta})\sin\left(\hat{\boldsymbol{\theta}}\right) + \cos(\boldsymbol{\theta})\cos\left(\hat{\boldsymbol{\theta}}\right)\right)$$

Agent Trajectories



Comparison with Baselines

Metrics

Undiscounted cumulated reward:

$$ar{R} = rac{1}{n_{
m ep}} \sum_{i=1}^{n_{
m ep}} \sum_{t=1}^{T} r_{i,t}$$

Comparison with Baselines

Metrics

Undiscounted cumulated reward:

$$ar{R} = rac{1}{n_{
m ep}} \sum_{i=1}^{n_{
m ep}} \sum_{t=1}^{T} r_{i,t}$$

Mean final cost:

$$\hat{C}_F = \frac{100}{n_{
m ep}} \sum_{i=1}^{n_{
m ep}} C(s_{i,T})$$

Comparison with Baselines

Metrics

Undiscounted cumulated reward:

$$ar{R} = rac{1}{n_{
m ep}} \sum_{i=1}^{n_{
m ep}} \sum_{t=1}^{T} r_{i,t}$$

Mean final cost:

$$\hat{C}_F = \frac{100}{n_{
m ep}} \sum_{i=1}^{n_{
m ep}} C(s_{i,T})$$

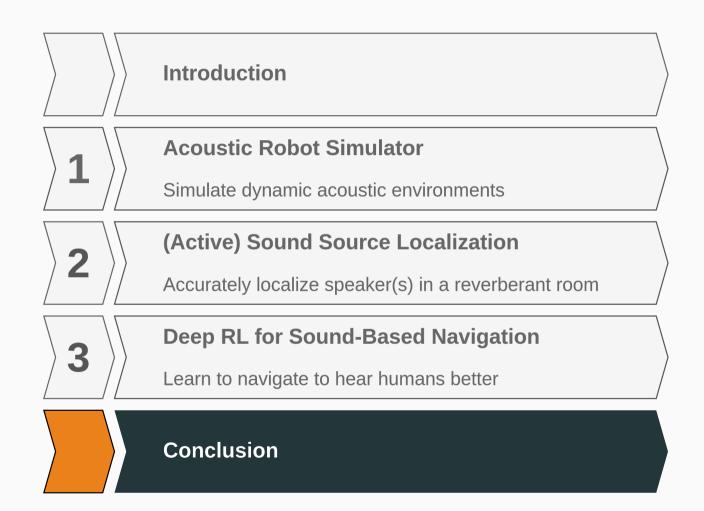
Results

Policy	Omnidirectional cost		Directional cost	
	$ar{R}\uparrow$	\hat{C}_{F} (%) \downarrow	$ar{R}\uparrow$	\hat{C}_{F} (%) \downarrow
$\pi_{ m random}$	-25	21.16	-22	22.2
$\pi_{ ext{safe random}}$	1420	20.99	1408	22.38
$\pi_{ m still}$	1481	21.13	1512	21.37
$\pi_{ m still\ orient}$	1495	20.87	1789	16.56
$\pi_{ heta}$	2432	4.18	2302	8.01

Summary - Deep RL for Navigation

- Definition of a novel perceptually-motivated navigation task
- Improving the ASR performance by position optimization
- Implementation of a complete Gym-compatible [1] environment from our simulator
- Training of a Deep RL agent that successfully solves the task

^[1] Brockmana et al., "Openai Gym," arXiv preprint, 2016.



1. Design and implementation of an holistic **simulation library** for modeling audio-based interactions.

- 1. Design and implementation of an holistic **simulation library** for modeling audio-based interactions.
- 2. Extensive experimental studies of deep-learning-based methods solving two variations of the static SSL problem.

- 1. Design and implementation of an holistic **simulation library** for modeling audio-based interactions.
- 2. Extensive experimental studies of deep-learning-based methods solving two variations of the **static SSL** problem.
- 3. Design and experimental evaluation of a novel deep-learning-based solution to an active multi-source localization problem.

- 1. Design and implementation of an holistic **simulation library** for modeling audio-based interactions.
- 2. Extensive experimental studies of deep-learning-based methods solving two variations of the **static SSL** problem.
- 3. Design and experimental evaluation of a novel deep-learning-based solution to an active multi-source localization problem.
- 4. Introduction of a perceptually-motivated robotic navigation task. Training and evaluation of Deep-RL agent solving this task.

Limitations & Short-Term Perspectives

• Study **limited to simulated environments**. Transferring algorithms trained in virtual environments to real robots is a challenging, yet necessary endeavour.

Limitations & Short-Term Perspectives

- Study **limited to simulated environments**. Transferring algorithms trained in virtual environments to real robots is a challenging, yet necessary endeavour.
- Task and agent constraints. Several assumptions could be relaxed.
 - ► Static sources → consider moving sources
 - free-field microphone array \rightarrow consider HRTF
 - Limitation to 2D geometric settings: → extension to 3D (elevation component)

Targetting more challenging and realistic problem formulations would improve the overall relevance of the proposed methods.

Limitations & Short-Term Perspectives

- Study **limited to simulated environments**. Transferring algorithms trained in virtual environments to real robots is a challenging, yet necessary endeavour.
- Task and agent constraints. Several assumptions could be relaxed.
 - ► Static sources → consider moving sources
 - free-field microphone array \rightarrow consider HRTF
 - Limitation to 2D geometric settings: → extension to 3D (elevation component)

Targetting more challenging and realistic problem formulations would improve the overall relevance of the proposed methods.

- Engineering and algorithmic challenges:
 - ► The RL agent's training is expensive, and tedious. Numerous engineering considerations are required to ensure a successful policy learning.
 - Relying on pre-computed WER cost maps allows the RL environment to run at a high refresh rate, but doesn't easily scale to multiple moving sources.

Perspectives

- Embodied and multimodal audio perception:
 - ▶ Combine auditory signals with visual cues to leverage social robots' sensors diversity.

^[1] Majumder et al., "Move2hear: Active Audio-Visual Source Separation," in ICCV, 2021.

^[2] Huang et al., "Audio Visual Language Maps for Robot Navigation," in *International Symposium on Experimental Robotics*, 2023.

^[3] Huang et al., "Multimodal Spatial Language Maps for Robot Navigation and Manipulation," *arXiv* preprint arXiv:2506.06862, 2025.

Perspectives

- Embodied and multimodal audio perception:
 - ▶ Combine auditory signals with visual cues to leverage social robots' sensors diversity.
- Active perception beyond localization:
 - Explore other navigation objectives: speaker-following, audio-based exploration, information-seeking policy, etc.[1][2][3]

^[1] Majumder et al., "Move2hear: Active Audio-Visual Source Separation," in ICCV, 2021.

^[2] Huang et al., "Audio Visual Language Maps for Robot Navigation," in *International Symposium on Experimental Robotics*, 2023.

^[3] Huang et al., "Multimodal Spatial Language Maps for Robot Navigation and Manipulation," *arXiv* preprint arXiv:2506.06862, 2025.

Perspectives

• Embodied and multimodal audio perception:

▶ Combine auditory signals with visual cues to leverage social robots' sensors diversity.

Active perception beyond localization:

► Explore other navigation objectives: speaker-following, audio-based exploration, information-seeking policy, etc.[1][2][3]

Model efficiency and generalization:

- ▶ Improve RL agents training efficiency and generalization capabilities.
- ► Solve more diverse and challenging MDPs (changing room geometries, moving sources, noisy conditions, etc.)

^[1] Majumder et al., "Move2hear: Active Audio-Visual Source Separation," in ICCV, 2021.

^[2] Huang et al., "Audio Visual Language Maps for Robot Navigation," in *International Symposium on Experimental Robotics*, 2023.

^[3] Huang et al., "Multimodal Spatial Language Maps for Robot Navigation and Manipulation," *arXiv* preprint arXiv:2506.06862, 2025.

Thank you!